首页> 外文OA文献 >The KnownLeaf literature curation system captures knowledge about Arabidopsis leaf growth and development and facilitates integrated data mining
【2h】

The KnownLeaf literature curation system captures knowledge about Arabidopsis leaf growth and development and facilitates integrated data mining

机译:KnownLeaf文献管理系统捕获有关拟南芥叶片生长和发育的知识,并促进集成数据挖掘

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The information that connects genotypes and phenotypes is essentially embedded in research articles written in natural language. To facilitate access to this knowledge, we constructed a framework for the curation of the scientific literature studying the molecular mechanisms that control leaf growth and development in Arabidopsis thaliana (Arabidopsis). Standard structured statements, called relations, were designed to capture diverse data types, including phenotypes and gene expression linked to genotype description, growth conditions, genetic and molecular interactions, and details about molecular entities. Relations were then annotated from the literature, defining the relevant terms according to standard biomedical ontologies. This curation process was supported by a dedicated graphical user interface, called Leaf Knowtator. A total of 283 primary research articles were curated by a community of annotators, yielding 9947 relations monitored for consistency and over 12,500 references to Arabidopsis genes. This information was converted into a relational database (KnownLeaf) and merged with other public Arabidopsis resources relative to transcriptional networks, protein–protein interaction, gene co-expression, and additional molecular annotations. Within KnownLeaf, leaf phenotype data can be searched together with molecular data originating either from this curation initiative or from external public resources. Finally, we built a network (LeafNet) with a portion of the KnownLeaf database content to graphically represent the leaf phenotype relations in a molecular context, offering an intuitive starting point for knowledge mining. Literature curation efforts such as ours provide high quality structured information accessible to computational analysis, and thereby to a wide range of applications.
机译:连接基因型和表型的信息实质上嵌入了以自然语言编写的研究文章中。为了方便获取这些知识,我们构建了一个用于管理科学文献的框架,以研究控制拟南芥(Arabidopsis)叶片生长和发育的分子机制。标准的结构化语句(称为关系)旨在捕获各种数据类型,包括与基因型描述,生长条件,遗传和分子相互作用以及有关分子实体的详细信息相关的表型和基因表达。然后从文献中注释关系,并根据标准生物医学本体定义相关术语。专用的图形用户界面称为Leaf Knowtator支持此策展过程。总共283篇主要研究文章由注释者社区进行策划,产生了9947个相关性受监控的一致性,并引用了超过12,500个有关拟南芥基因的信息。该信息被转换为关系数据库(KnownLeaf),并与其他与转录网络,蛋白质-蛋白质相互作用,基因共表达和其他分子注释有关的拟南芥公共资源合并。在KnownLeaf中,可以将叶片表型数据与源自该策展计划或外部公共资源的分子数据一起进行搜索。最后,我们用一部分KnownLeaf数据库内容构建了一个网络(LeafNet),以图形方式表示分子上下文中的叶表型关系,为知识挖掘提供了直观的起点。诸如我们这样的文献管理工作可提供可用于计算分析的高质量结构化信息,从而可广泛应用。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号